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Executive Overview 

 

 In this report, we present the design, implementation, and results of a dual-core, 

32-bit, pipelined, MIPS-based microprocessor with one level of split instruction and data 

cache. The processor was implemented in VHDL and tested both in ModelSim for 

source- and synthesis-simulation as well as on an Altera Cyclone II FPGA for hardware 

verification. In accordance with standard MIPS protocol, the processor is based on a 

five-stage pipeline (instruction fetch, decode, execute, memory, and write-back) and 

contains 32 32-bit registers. The multi-core processor implements the shared memory 

model, wherein a coherence controller maintains cache coherence between the two 

processors using cache invalidation. The architecture also provides support for LL/SC 

instructions to provide the programmer with a means of write atomicity. 

 Although there were numerous challenges in design, the team was successful in 

implementing a processor capable of meeting all of the target expectations. Throughout 

design, careful attention was paid to the modularization of code as well as the planning 

for future modifications. Furthermore, extensive testing was performed on the processor 

through each stage of the design process so as to ensure a working processor before 

moving on with additions and improvements. The process as a whole demonstrated the 

importance of various common optimizations, such as instruction and data caches for 

reducing average memory access time and multiple cores for allowing parallel 

computation, as well as the difficulties and tradeoffs involved in achieving this higher 

level of complexity. In the following report, we detail the creation of this processor from 

an earlier pipelined design, demonstrate an example of the kind of debugging involved 

in its design, as well as provide actual results when tested on a handful of MIPS 

assembly programs. 
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Processor and Cache Design 
 
 The processor as it exists in its final state--a dual-core microprocessor with fully 

functional cache coherence and an LRU replacement policy--is the result of a continuing 

evolution from an earlier five-stage pipelined uniprocessor design. In building on the 

earlier design, emphasis was placed on both improved functionality and performance as 

well as maintaining a means of modification with minimal time required for 

implementation. In doing so, the modularity of code was heavily enforced throughout 

every addition so that upon implementing future modifications, little would have to be 

rewritten or disassembled to make changes. A primary example of this is the frequent 

use of “wrappers” (or interfaces) to contain smaller blocks of code. By using a clearly 

defined interface and encapsulating all local functionality within their sub modules, new 

functional blocks could be easily implemented with the existing system, and often by 

another team member, with minimal effort or potential for mistakes. 

 In expanding on the previous pipelined processor design to create a dual-core 

processor, the team faced several challenges. First, as is the case with any shared-

memory design, some level of cache coherence had to be developed to avoid either 

processor operating on stale data. Because this was of no concern in the uniprocessor, 

the original cache hierarchy involved both the instruction cache and the data cache 

communicating directly with the memory arbitrator, which acts as a priority multiplexer to 

selectively grant memory access to either the instruction-fetch (IF) or memory (MEM) 

stages of the pipeline. However, in the multiprocessor architecture, this design had to 

be modified so that the two data caches could communicate with each other. 

(Instruction data was assumed modifiable, and thus the instruction caches were left as 

independent entities, still communicating directly with the memory arbitrator.) 

The solution to the cache coherence problem was to implement a coherence 

controller, which acts as a middleman between the two data caches as well as an 

interface with the memory arbitrator. Within the caches themselves, the modified-

shared-invalid (MSI) protocol was used both as a means of keeping track of the state of 

each block of data as well as notifying the other processor(s) of any changes through 

the coherency controller. As states of individual blocks change, the activity is routed 

back to the coherence controller, where it takes the appropriate action in response. The 
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coherence controller was designed to exploit this data cache modification by using a 

snooping protocol to communicate applicable changes to each cache in the system. 

This “snooping” presented some challenges itself in that while the coherence controller 

attempts to gain access to a particular block in a cache, potentially changing its state as 

well, the corresponding processor may be accessing that block simultaneously. The 

chosen solution was to provide a second read and write port for use by the snoop 

controller and to arbitrate write access such that the snoop controller is always granted 

priority over any processor accesses to that location. 

Inside the data caches, the basic array structure first implemented with the 

pipelined uniprocessor was left unchanged. Each data cache is comprised of 32 two-

way associative sets, with each block containing two 32-bit words of data. The fact that 

there are two words per block (64 bits of data) did complicate design to some extent 

due to the fact that there is a maximum memory bandwidth of 32 bits. The solution, 

when either reading or writing back an entire block from or to the coherence controller, 

is to send and receive data one word at a time, back to back. 

Another issue that arises from the implementation of a shared memory system is 

that of locking and unlocking data to provide write atomicity. For this processor, the 

MIPS-standard LL/SC write atomicity method was employed. Functionality was added 

both to the processor pipeline and to the data cache to accommodate this change 

whereby an LL (load linked) instruction stores the address of the loaded data in a 

special link register contained within the cache. Likewise, an SC (store conditional) 

instruction is implemented using a signal originating from the data cache, which is 

asserted when the address in the linked register matches that being written to (and has 

not been invalidated). This signal is used in a multiplexer in the MEM stage of the 

pipeline to determine whether or not a value should be written to memory as well as 

whether a value of 1 or 0 should be written to the destination register to indicate 

success or failure in completing the atomic store operation. 

 
Processor Debugging 
 
 As a matter of exercise, the team was presented with a sample assembly file 

entitled “debug.asm” and its associated “memout.hex” file (generated from execution), 
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which is known to reveal at least two hardware design errors in a particular multicore 

processor. The problem description also indicates that the memory and pipeline 

components of the processor are in working order and that the cache hierarchy is the 

only subsystem in question. 

 This first step is to identify any abnormalities in the hex output, which are 

obtained simply by running the assembly program through a known working processor 

or simulator. After completing this operation, only one difference between the two hex 

outputs was made apparent, as is shown in highlighted text in Table 1.1 below:  

 

debug.asm expected memout.hex incorrect memout.hex 

org 0x0000 
 ori $sp, $zero, 0x3FFC 

 jal mp0 

 halt 

lock: 

 ll $t0, 0($a0) 

 bne $t0, $0, lock 

 addi $t0, $t0, 1 

 sc $t0, 0($a0) 

 beq $t0, $0, lock 

 jr $ra 

unlock: 

 sw    $0, 0($a0) 

 jr    $ra 

mp0: 

 push  $ra 

 ori   $a0, $zero, l1 

 jal   lock 

 ori  $t2, $zero, res 

 lw  $t0, 0($t2) 

 addiu $t1, $t0, 0x2000 

 sw  $t1, 0($t2) 

 ori  $a0, $zero, l1 

 jal  unlock 

 pop  $ra 

 jr  $ra 

l1: 

 cfw  0x0 

 org  0x0200 

 ori  $sp, $zero, 0x7FFC 

 jal  mp1 

 halt 

mp1: 

 push $ra 

 ori  $a0, $zero, l1 

 jal  lock 

 ori  $t2, $zero, res 

:04000000341D3FFC70 
:040001000C00000BE4 

:04000200FFFFFFFFFE 

:04000300C0880000B1 

:040004001408FFFEDF 

:0400050021080001CD 

:04000600E08800008E 

:040007001008FFFBE3 

:0400080003E0000809 

:04000900AC800000C7 

:04000A0003E0000807 

:04000B0027BDFFFC12 

:04000C00AFBF000082 

:04000D003404006057 

:04000E000C000003DF 

:04000F00340A02406D 

:040010008D48000017 

:04001100250920009D 

:04001200AD490000F4 

:040013003404006051 

:040014000C000009D3 

:040015008FBF000099 

:0400160027BD0004FE 

:0400170003E00008FA 

:04008000341D7FFCB0 

:040081000C000083EC 

:04008200FFFFFFFF7E 

:0400830027BDFFFC9A 

:04008400AFBF00000A 

:0400850034040060DF 

:040086000C00000367 

:04008700340A0240F5 

:040088008D4800009F 

:040089002509FFBE88 

:04008A00AD4900007C 

:04008B0034040060D9 

:04008C000C0000095B 

:04000000341D3FFC70 
:040001000C00000BE4 

:04000200FFFFFFFFFE 

:04000300C0880000B1 

:040004001408FFFEDF 

:0400050021080001CD 

:04000600E08800008E 

:040007001008FFFBE3 

:0400080003E0000809 

:04000900AC800000C7 

:04000A0003E0000807 

:04000B0027BDFFFC12 

:04000C00AFBF000082 

:04000D003404006057 

:04000E000C000003DF 

:04000F00340A02406D 

:040010008D48000017 

:04001100250920009D 

:04001200AD490000F4 

:040013003404006051 

:040014000C000009D3 

:040015008FBF000099 

:0400160027BD0004FE 

:0400170003E00008FA 

:04008000341D7FFCB0 

:040081000C000083EC 

:04008200FFFFFFFF7E 

:0400830027BDFFFC9A 

:04008400AFBF00000A 

:0400850034040060DF 

:040086000C00000367 

:04008700340A0240F5 

:040088008D4800009F 

:040089002509FFBE88 

:04008A00AD4900007C 

:04008B0034040060D9 

:04008C000C0000095B 



6 

 lw  $t0, 0($t2) 

 addiu $t1, $t0, -66 

 sw  $t1, 0($t2) 

 ori  $a0, $zero, l1 

 jal  unlock 

 pop  $ra 

 jr  $ra 

res: 

 cfw  0xBEEF 

:04008D008FBF000021 

:04008E0027BD000486 

:04008F0003E0000882 

:040090000000DEADE1 

:040FFE0000000008E7 

:041FFE0000000208D5 

:00000001FF 

 

 

:04008D008FBF000021 

:04008E0027BD000486 

:04008F0003E0000882 

:040090000000DEEFE1 

:040FFE0000000008E7 

:041FFE0000000208D5 

:00000001FF 

 

 

  
Table 1.1: Error-inducing assembly program along with its associated hex output files for both a working 

       and non-working processor 

 

As can be seen in the table, the bug(s) in the processor are manifested as erroneous 

data being stored at memory location 0x240 (represented in the table as 

0x240/4=0x090), or simply “res” as in the assembly file. 

 Upon inspection of the assembly program, it can be seen that the intention of the 

program is to perform some operation on the data in a memory location shared between 

two processors and then write the data back to memory. When tracing back the 

expected output, it can be seen that the first processor (Processor 0) should gain 

precedence over the second processor (Processor 1) in acquiring the lock on the 

shared memory location. The proof is as follows: Processor 0 loads the word “0xBEEF” 

from “res” and adds 0x2000 to it before writing it back, thus changing the stored data to 

“0xDEEF.” Subsequently, Processor 1 loads “0xDEEF,” subtracts decimal 66 from it, 

thus changing its value to “0xDEAD,” and then writes it back to memory. This process 

could also be reversed (Processor 1 then Processor 0), but the two cannot be 

intertwined. Clearly there is a problem in the processor that is preventing this write 

sequence from occurring as expected. 

 One potential explanation for the error is that Processor 0’s write to the shared 

location is never broadcast to the rest of the system.  This could occur for a variety of 

reasons, but clearly Processor 1’s cache is failing to see that the memory location has 

been modified by the other processor. Another potential source of the problem is that 

the lock on the memory location is never truly obtained. Had the lock been obtained by 

either processor, the other would detect that write atomicity on the lock location had 

been broken and thus would not read stale data from location “res.” 
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 Upon further analysis, it becomes clear how the above errors might propagate to 

the resulting memout.hex. First, both processors actually obtain the lock, allowing each 

of them to “think” that they have exclusive control over that memory location, thus 

allowing them to operate on stale data without knowing it. Furthermore, each processor 

modifies the data locally in its cache without sending an appropriate signal to the 

coherence controller to invalidate the data in the other processor’s cache. Thus, upon 

writing back the data, it is simply a race to gain control over the memory first; in the 

case of the processor in question, Processor 1 writes its data back first, which is then 

overwritten by the data “0xDEEF” from Processor 0. 

 In searching for the true source of these errors, the first obvious place to look in 

the waveforms would be those corresponding to the data cache’s MSI state in each 

processor. Doing so would allow one to verify what data is actually contained in the 

processors’ caches at any given point in time (before, during, or after load and store 

operations). Next, one might look at the bus signals (as well as the data) flowing 

between the two caches through the coherence controller. This would show if there are 

any issues with either the coherence controller or the caches’ state machines 

themselves. After localizing the problem to any one of these various modules, further 

inspection would follow accordingly. To determine the specific source of the error, and 

potentially rule out one of the two theories, another good first step would be to develop 

a test whereby a lock is theoretically obtained by each processor, and then the data is 

written back to different locations. Doing so would avoid the problem of losing whatever 

data was overwritten by the most recent write operation. 

 
Results 
 
Tests 

In order to compare our two processors, we used two different programs. The 

first was a merge sort program. This displays high cache usage and alternating loads 

and stores. The dual core version does an insertion sort on two 50-word datasets, and 

then synchronizes and the second processor does a merge sort on the two datasets. 

The single-core version is similar, but it runs on a single processor. There are still two 

insertion sorts, but they are performed one after the other. 
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The other test is a search program. There are 400 records to be search through 

for a pre-specified key. This program does mostly loads, then a store at the end of the 

program. With the high number of records, the cache is refilled with every other load. 

However, nothing is ever written to those locations so there is no write-back. The single-

core version searches through all 400 records sequentially. The dual-core version splits 

the dataset into two and each processor searches its set. For both programs, the key is 

ten places from the end of the dataset. 

 

Pipelined Processor with Instruction and Data Cache 

 Our pipelined processor with cache is an add-on to the pipelined processor we 

had already designed. We have added independent instruction and data caches. The 

instruction cache is a 16-set, one-word, direct-mapped cache. 

 The data cache is a 16-set, two-way, two-word, partly associative cache. The 

cache implements write-back with an LRU replacement policy. The cache supports 32-

bit, word-granularity address (30-bit addresses). Cache hits take one cycle. Cache 

misses to a clean or unused cache position take 18 cycles (memory latency is eight 

cycles). 

 The critical path of the processor is contained within the data cache. It originates 

at the state register, goes through the data array, back to the controller to determine 

which block to select, and finally to the data output to the processor. This path is pretty 

much where we expected the critical path to occur. We actually could have reduced this 

path by half if we had clocked our cache on the same edge as the processor. It is 

currently clocked on the falling edge, which was necessary with the non-cached 

processor, but probably could be removed with a bit of work in the cached one. 

Although Figures A.2 - A.5 are the diagrams of the pipeline for the dual-core 

processor, this processor is almost identical except for a few obvious changes. One 

such change is that the single-core processor does not have a snooping controller. 

 

Est. Frequency 22.03 MHz 
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Avg. Instructions/Cycle single.mergesort.asm: 0.4791 

single.search.asm: 0.316 

Instruction Latency 1,089 ns (24 cycles) 

Total FPGA Logic Blocks 6,897 

        Combinational 2,263 

        Register Only 4,634 

 Table 1.2: Pipelined Processor with Instruction and Data Cache Performance and Size Results 

 

Dual-Core Processor 

 Our dual-core processor has two of the above processor cores with the data 

caches sharing a memory bus. The cache hierarchy is the same as the one 

implemented in the single-core processor with cache. The only difference is that the tag 

and status arrays are now dual-port arrays so that the new snoop controller can snoop 

into the arrays without stalling the processor. 

One of the simplest coherence protocols, MSI, was used to ensure that 

coherence was followed. Each block in the cache has its own valid and dirty bits. Each 

of the three states in MSI (modified, shared, and invalid) can be encoded as a function 

of these two bits. 

The coherence controller serves as the data cache’s interface to the memory 

arbitrator. The coherence controller administrates bus operations (Rd, RdX, WB), 

provides a snooping bus into the opposite core, and has a state machine to control 

transfers to and from memory. To maintain an implementable design in the timeframe 

given, priority is always awarded to processor 0. The memory access times are similar 

for this new cache. A snoop that results in a cache-to-cache transfer only takes one 

cycle. 

The memory arbitrator was moved out of the individual cores and placed 

between the core’s instruction caches, the coherence controller, and memory. Priority is 

                                                
1
 This result is very likely incorrect. The merge sort program was run and the processor seemed to be 

loading the data and computing the results correctly but they were not stored to RAM. Thus, there were 

about 200 less stores that the same program run on the multi-core processor. 
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given to the data port since the whole pipeline stalls on a data memory miss. If no data 

access is happening, priority is given to processor 0’s instruction cache. 

The critical path of the processor originates in the data cache’s state, goes 

through the block-select logic, through the cache array, out the data bus, snoops into 

the other cache, and returns to the requesting processor. Just like the single-core 

cached processor, this path is exactly what we expected. Again, the data cache is 

clocked on the falling edge, so this path could be cut down by half if we tweaked a few 

things to make it work on the rising edge. 

The overall dual-core block diagram is shown in Figure A.1. The pipeline block 

diagrams are shown in Figures A.2 - A.4. The inside of the data cache block is shown in 

Figure A.5. 

 

Est. Frequency 21.2 MHz 

Avg. Instructions/Cycle dual.mergesort.asm: 0.339 
dual.search.asm: 0.461 

Instruction Latency 991 ns (21 cycles) 

Total FPGA Logic Blocks 19,406 

        Combinational 10,205 

        Register Only 9,201 

 Table 1.3: Dual-Core Processor Performance and Size Results 

 

Conclusions 
 
 This semester, we implemented four different processor designs. We started with 

a single-cycle, pipelined it, added a cache, and finally just simply copied and pasted it 

(not really, of course). Our final design was a MIPS-based dual-core processor with 

instruction and data cache with MSI coherence and a snoopy bus. Although surely there 

are at least a few bugs left in our processor, it is able to pass all of the provided and 

self-written tests that we shoved in our computer’s memory. 
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 Our processor, though lacking in features, could perhaps be used as a cheap 

microcontroller if an I/O processor and interrupts were added. It would be very similar to 

some existing microcontrollers in the marketplace, such as Microchip’s PIC32 (also 

MIPS based). 

The only disappointment is that the cache is clocked on the falling edge, so our 

maximum frequency is about half as much as it could be. If we were to have a bit more 

time, we would have fixed that to improve the performance of our processor. Also, as 

development progressed, our core structural file became very messy, to the point where 

we both dreaded having to edit it. If we were to do it again, we would either break up 

that file more or come up with some sort of naming convention for the signals contained 

within. 
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Appendix 

Figure A.1 – Dual-Core Processor Block Diagram 
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Figure A.2 – Instruction Fetch Stage 
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Figure A.3 – Instruction Decode Stage 
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Figure A.4 – Execute, Memory, and Write Back Stages 
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Figure A.5 – Data Cache Block Diagram 
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Figure A.6 – Data Cache Controller State Diagram 
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Figure A.7 – Coherence Controller State Diagram 

 

 


