Final Report: Dual-Core MIPS Microprocessor

ECE 437: Computer Design and Prototyping
TA: Eric Villasenor
December 9, 2011

Dan Ehrman and Brian Kelley

Executive Overview

In this report, we present the design, implementation, and results of a dual-core,
32-bit, pipelined, MIPS-based microprocessor with one level of split instruction and data
cache. The processor was implemented in VHDL and tested both in ModelSim for
source- and synthesis-simulation as well as on an Altera Cyclone || FPGA for hardware
verification. In accordance with standard MIPS protocol, the processor is based on a
five-stage pipeline (instruction fetch, decode, execute, memory, and write-back) and
contains 32 32-bit registers. The multi-core processor implements the shared memory
model, wherein a coherence controller maintains cache coherence between the two
processors using cache invalidation. The architecture also provides support for LL/SC
instructions to provide the programmer with a means of write atomicity.

Although there were numerous challenges in design, the team was successful in
implementing a processor capable of meeting all of the target expectations. Throughout
design, careful attention was paid to the modularization of code as well as the planning
for future modifications. Furthermore, extensive testing was performed on the processor
through each stage of the design process so as to ensure a working processor before
moving on with additions and improvements. The process as a whole demonstrated the
importance of various common optimizations, such as instruction and data caches for
reducing average memory access time and multiple cores for allowing parallel
computation, as well as the difficulties and tradeoffs involved in achieving this higher
level of complexity. In the following report, we detail the creation of this processor from
an earlier pipelined design, demonstrate an example of the kind of debugging involved
in its design, as well as provide actual results when tested on a handful of MIPS
assembly programs.

Processor and Cache Design

The processor as it exists in its final state--a dual-core microprocessor with fully
functional cache coherence and an LRU replacement policy--is the result of a continuing
evolution from an earlier five-stage pipelined uniprocessor design. In building on the
earlier design, emphasis was placed on both improved functionality and performance as
well as maintaining a means of modification with minimal time required for
implementation. In doing so, the modularity of code was heavily enforced throughout
every addition so that upon implementing future modifications, little would have to be
rewritten or disassembled to make changes. A primary example of this is the frequent
use of “wrappers” (or interfaces) to contain smaller blocks of code. By using a clearly
defined interface and encapsulating all local functionality within their sub modules, new
functional blocks could be easily implemented with the existing system, and often by
another team member, with minimal effort or potential for mistakes.

In expanding on the previous pipelined processor design to create a dual-core
processor, the team faced several challenges. First, as is the case with any shared-
memory design, some level of cache coherence had to be developed to avoid either
processor operating on stale data. Because this was of no concern in the uniprocessor,
the original cache hierarchy involved both the instruction cache and the data cache
communicating directly with the memory arbitrator, which acts as a priority multiplexer to
selectively grant memory access to either the instruction-fetch (IF) or memory (MEM)
stages of the pipeline. However, in the multiprocessor architecture, this design had to
be modified so that the two data caches could communicate with each other.
(Instruction data was assumed modifiable, and thus the instruction caches were left as
independent entities, still communicating directly with the memory arbitrator.)

The solution to the cache coherence problem was to implement a coherence
controller, which acts as a middleman between the two data caches as well as an
interface with the memory arbitrator. Within the caches themselves, the modified-
shared-invalid (MSI) protocol was used both as a means of keeping track of the state of
each block of data as well as notifying the other processor(s) of any changes through
the coherency controller. As states of individual blocks change, the activity is routed

back to the coherence controller, where it takes the appropriate action in response. The

3

coherence controller was designed to exploit this data cache modification by using a
snooping protocol to communicate applicable changes to each cache in the system.
This “snooping” presented some challenges itself in that while the coherence controller
attempts to gain access to a particular block in a cache, potentially changing its state as
well, the corresponding processor may be accessing that block simultaneously. The
chosen solution was to provide a second read and write port for use by the snoop
controller and to arbitrate write access such that the snoop controller is always granted
priority over any processor accesses to that location.

Inside the data caches, the basic array structure first implemented with the
pipelined uniprocessor was left unchanged. Each data cache is comprised of 32 two-
way associative sets, with each block containing two 32-bit words of data. The fact that
there are two words per block (64 bits of data) did complicate design to some extent
due to the fact that there is a maximum memory bandwidth of 32 bits. The solution,
when either reading or writing back an entire block from or to the coherence controller,
is to send and receive data one word at a time, back to back.

Another issue that arises from the implementation of a shared memory system is
that of locking and unlocking data to provide write atomicity. For this processor, the
MIPS-standard LL/SC write atomicity method was employed. Functionality was added
both to the processor pipeline and to the data cache to accommodate this change
whereby an LL (load linked) instruction stores the address of the loaded data in a
special link register contained within the cache. Likewise, an SC (store conditional)
instruction is implemented using a signal originating from the data cache, which is
asserted when the address in the linked register matches that being written to (and has
not been invalidated). This signal is used in a multiplexer in the MEM stage of the
pipeline to determine whether or not a value should be written to memory as well as
whether a value of 1 or 0 should be written to the destination register to indicate

success or failure in completing the atomic store operation.

Processor Debugging

As a matter of exercise, the team was presented with a sample assembly file

entitled “debug.asm” and its associated “memout.hex” file (generated from execution),

which is known to reveal at least two hardware design errors in a particular multicore

processor. The problem description also indicates that the memory and pipeline

components of the processor are in working order and that the cache hierarchy is the

only subsystem in question.

This first step is to identify any abnormalities in the hex output, which are

obtained simply by running the assembly program through a known working processor

or simulator. After completing this operation, only one difference between the two hex

outputs was made apparent, as is shown in highlighted text in Table 1.1 below:

debug.asm expected memout.hex | incorrect memout.hex
org 0x0000 :04000000341D3FFC70 :04000000341D3FFC70
ori $sp, $zero, Ox3FFC | :040001000C00000BE4 :040001000C00000BE4
Jal mp0 :04000200FFFFFFFFFE :04000200FFFFFFFFFE
halt :04000300C0880000B1 :04000300C0880000B1
lock: :040004001408FFFEDF | :040004001408FFFEDF
11 $t0, 0($a0) :0400050021080001CD | :0400050021080001CD
bne $t0, $0, lock :04000600E08800008E | :04000600E08800008E
addi $t0, $t0, 1 :040007001008FFFBE3 :040007001008FFFBE3
sc $t0, 0($a0) :0400080003E0000809 [:0400080003E0000809
beq $t0, $0, lock :04000900AC800000C7 :04000900AC800000C7
jr $ra :04000A0003E0000807 :04000A0003E0000807
unlock: :04000B0027BDFFFC12 :04000B0027BDFFFC12
sw $0, 0(%a0) :04000CO0AFBF000082 :04000C00AFBF000082
jr $ra :04000D003404006057 :04000D003404006057
mpO0 :04000E000C000003DF | :04000E000C000003DF
push $ra :04000F00340A02406D | :04000F00340A02406D
ori $a0, S$zero, 11 :040010008D48000017 :040010008D48000017
jal lock :04001100250920009D | :04001100250920009D
ori $t2, $zero, res :04001200AD490000F4 :04001200AD490000F4
1w $t0, 0(5t2) :040013003404006051 :040013003404006051
addiu $t1, $t0, 0x2000 :040014000C000009D3 :040014000C000009D3
sw $tl, 0(5t2) :040015008FBF000099 | :040015008FBF000099
ori $a0, $zero, 11 :0400160027BDO004FE | :0400160027BDO004FE
jal unlock :0400170003E00008FA | :0400170003E00008FA
pop $ra :04008000341D7FFCBO :04008000341D7FFCBO
ir $ra :040081000C000083EC | :040081000C000083EC
11: :04008200FFFFEFFFFTE :04008200FFFFFFFFTE
cfw 0x0 :0400830027BDFFFC9A | :0400830027BDFFFCIA
org 0x0200 :04008400AFBF00000A | :04008400AFBF00000A
ori $sp, $zero, Ox7FFC | :0400850034040060DF | :0400850034040060DF
jal mpl :040086000C00000367 :040086000C00000367
halt :04008700340A0240F5 :04008700340A0240F5
mp1 : :040088008D4800009F | :040088008D4800009F
push $ra :040089002509FFBESS :040089002509FFBES8
ori $a0, S$zero, 11 :04008A00AD4900007C | :04008A00AD4900007C
jal lock :04008B0034040060D9 | :04008B0034040060D9
ori $t2, S$zero, res :04008C000C0000095B | :04008C000C0000095B

1w St0, 0(S$t2) :04008D008FBF000021 :04008D008FBF000021
addiu tl, St0, -66 :04008E0027BD000486 :04008E0027BD000486
SW Stl, 0(S$t2) :04008F0003E0000882 :04008F0003E0000882
ori $a0, $zero, 11 :040090000000DEADEL :040090000000DEEFE1
Jal unlock :040FFEOO0QO0OOO0O0O8EY :040FFEOO0Q0OO0Q0O00OBET
pop Sra :041FFE0000000208D5 :041FFE0000000208D5
Jr Sra :00000001FF :00000001FF
res:
cfw 0xBEEF

Table 1.1: Error-inducing assembly program along with its associated hex output files for both a working
and non-working processor
As can be seen in the table, the bug(s) in the processor are manifested as erroneous
data being stored at memory location 0x240 (represented in the table as
0x240/4=0x090), or simply “res” as in the assembly file.

Upon inspection of the assembly program, it can be seen that the intention of the
program is to perform some operation on the data in a memory location shared between
two processors and then write the data back to memory. When tracing back the
expected output, it can be seen that the first processor (Processor 0) should gain
precedence over the second processor (Processor 1) in acquiring the lock on the
shared memory location. The proof is as follows: Processor 0 loads the word “OxBEEF”
from “res” and adds 0x2000 to it before writing it back, thus changing the stored data to
“‘OxDEEF.” Subsequently, Processor 1 loads “OxDEEF,” subtracts decimal 66 from it,
thus changing its value to “OXDEAD,” and then writes it back to memory. This process
could also be reversed (Processor 1 then Processor 0), but the two cannot be
intertwined. Clearly there is a problem in the processor that is preventing this write
sequence from occurring as expected.

One potential explanation for the error is that Processor 0’s write to the shared
location is never broadcast to the rest of the system. This could occur for a variety of
reasons, but clearly Processor 1’s cache is failing to see that the memory location has
been modified by the other processor. Another potential source of the problem is that
the lock on the memory location is never truly obtained. Had the lock been obtained by
either processor, the other would detect that write atomicity on the lock location had

been broken and thus would not read stale data from location “res.”

Upon further analysis, it becomes clear how the above errors might propagate to
the resulting memout.hex. First, both processors actually obtain the lock, allowing each
of them to “think” that they have exclusive control over that memory location, thus
allowing them to operate on stale data without knowing it. Furthermore, each processor
modifies the data locally in its cache without sending an appropriate signal to the
coherence controller to invalidate the data in the other processor’s cache. Thus, upon
writing back the data, it is simply a race to gain control over the memory first; in the
case of the processor in question, Processor 1 writes its data back first, which is then
overwritten by the data “OxDEEF” from Processor 0.

In searching for the true source of these errors, the first obvious place to look in
the waveforms would be those corresponding to the data cache’s MSI state in each
processor. Doing so would allow one to verify what data is actually contained in the
processors’ caches at any given point in time (before, during, or after load and store
operations). Next, one might look at the bus signals (as well as the data) flowing
between the two caches through the coherence controller. This would show if there are
any issues with either the coherence controller or the caches’ state machines
themselves. After localizing the problem to any one of these various modules, further
inspection would follow accordingly. To determine the specific source of the error, and
potentially rule out one of the two theories, another good first step would be to develop
a test whereby a lock is theoretically obtained by each processor, and then the data is
written back to different locations. Doing so would avoid the problem of losing whatever

data was overwritten by the most recent write operation.

Results

Tests

In order to compare our two processors, we used two different programs. The
first was a merge sort program. This displays high cache usage and alternating loads
and stores. The dual core version does an insertion sort on two 50-word datasets, and
then synchronizes and the second processor does a merge sort on the two datasets.
The single-core version is similar, but it runs on a single processor. There are still two

insertion sorts, but they are performed one after the other.

The other test is a search program. There are 400 records to be search through
for a pre-specified key. This program does mostly loads, then a store at the end of the
program. With the high number of records, the cache is refilled with every other load.
However, nothing is ever written to those locations so there is no write-back. The single-
core version searches through all 400 records sequentially. The dual-core version splits
the dataset into two and each processor searches its set. For both programs, the key is

ten places from the end of the dataset.

Pipelined Processor with Instruction and Data Cache

Our pipelined processor with cache is an add-on to the pipelined processor we
had already designed. We have added independent instruction and data caches. The
instruction cache is a 16-set, one-word, direct-mapped cache.

The data cache is a 16-set, two-way, two-word, partly associative cache. The
cache implements write-back with an LRU replacement policy. The cache supports 32-
bit, word-granularity address (30-bit addresses). Cache hits take one cycle. Cache
misses to a clean or unused cache position take 18 cycles (memory latency is eight
cycles).

The critical path of the processor is contained within the data cache. It originates
at the state register, goes through the data array, back to the controller to determine
which block to select, and finally to the data output to the processor. This path is pretty
much where we expected the critical path to occur. We actually could have reduced this
path by half if we had clocked our cache on the same edge as the processor. It is
currently clocked on the falling edge, which was necessary with the non-cached
processor, but probably could be removed with a bit of work in the cached one.

Although Figures A.2 - A.5 are the diagrams of the pipeline for the dual-core
processor, this processor is almost identical except for a few obvious changes. One
such change is that the single-core processor does not have a snooping controller.

Est. Frequency 22.03 MHz

Avg. Instructions/Cycle single.mergesort.asm: 0.479'
single.search.asm: 0.316

Instruction Latency 1,089 ns (24 cycles)

Total FPGA Logic Blocks | 6,897

Combinational 2,263

Register Only 4,634

Table 1.2: Pipelined Processor with Instruction and Data Cache Performance and Size Results

Dual-Core Processor

Our dual-core processor has two of the above processor cores with the data
caches sharing a memory bus. The cache hierarchy is the same as the one
implemented in the single-core processor with cache. The only difference is that the tag
and status arrays are now dual-port arrays so that the new snoop controller can snoop
into the arrays without stalling the processor.

One of the simplest coherence protocols, MSI, was used to ensure that
coherence was followed. Each block in the cache has its own valid and dirty bits. Each
of the three states in MSI (modified, shared, and invalid) can be encoded as a function
of these two bits.

The coherence controller serves as the data cache’s interface to the memory
arbitrator. The coherence controller administrates bus operations (Rd, RdX, WB),
provides a snooping bus into the opposite core, and has a state machine to control
transfers to and from memory. To maintain an implementable design in the timeframe
given, priority is always awarded to processor 0. The memory access times are similar
for this new cache. A snoop that results in a cache-to-cache transfer only takes one
cycle.

The memory arbitrator was moved out of the individual cores and placed

between the core’s instruction caches, the coherence controller, and memory. Priority is

! This result is very likely incorrect. The merge sort program was run and the processor seemed to be
loading the data and computing the results correctly but they were not stored to RAM. Thus, there were
about 200 less stores that the same program run on the multi-core processor.

given to the data port since the whole pipeline stalls on a data memory miss. If no data
access is happening, priority is given to processor Q’s instruction cache.

The critical path of the processor originates in the data cache’s state, goes
through the block-select logic, through the cache array, out the data bus, snoops into
the other cache, and returns to the requesting processor. Just like the single-core
cached processor, this path is exactly what we expected. Again, the data cache is
clocked on the falling edge, so this path could be cut down by half if we tweaked a few
things to make it work on the rising edge.

The overall dual-core block diagram is shown in Figure A.1. The pipeline block
diagrams are shown in Figures A.2 - A.4. The inside of the data cache block is shown in
Figure A.5.

Est. Frequency 21.2 MHz

Avg. Instructions/Cycle dual.mergesort.asm: 0.339
dual.search.asm: 0.461

Instruction Latency 991 ns (21 cycles)

Total FPGA Logic Blocks | 19,406

Combinational 10,205

Register Only 9,201

Table 1.3: Dual-Core Processor Performance and Size Results

Conclusions

This semester, we implemented four different processor designs. We started with
a single-cycle, pipelined it, added a cache, and finally just simply copied and pasted it
(not really, of course). Our final design was a MIPS-based dual-core processor with
instruction and data cache with MSI coherence and a snoopy bus. Although surely there
are at least a few bugs left in our processor, it is able to pass all of the provided and

self-written tests that we shoved in our computer’s memory.

10

Our processor, though lacking in features, could perhaps be used as a cheap
microcontroller if an 1/0O processor and interrupts were added. It would be very similar to
some existing microcontrollers in the marketplace, such as Microchip’s PIC32 (also
MIPS based).

The only disappointment is that the cache is clocked on the falling edge, so our
maximum frequency is about half as much as it could be. If we were to have a bit more
time, we would have fixed that to improve the performance of our processor. Also, as
development progressed, our core structural file became very messy, to the point where
we both dreaded having to edit it. If we were to do it again, we would either break up
that file more or come up with some sort of naming convention for the signals contained

within.

11

12

I o v () I <
>
)
[v4
S
o —
dE
— £l &
yem-asul o] 3} D
H uapJ~asul £ <] ki
@ u"elep”asul S I @
= Jppe-asul =
c|
® ejep doous ©
S & Kup doous A m
o 9 o & —
i S pleA doous ko] ® S
m o Qm_doous c 51 N
8 & do_doous ocl| @ <
° @ Jppe_doous s 5
: A
yem_snq ol 5 |8
ui"elep snq =1 3 |5 g
@ o, — w [z o
% 8 QOIm:Q) O |z A
] a ejep_snq N & o 3
o2 1ppeTsng 2 m 2
- o S5 |
© a o
-
~ -,
mie |8< |§
wm go% M m.wm.mm Yojey emwal = %) (a]
- 68 oo w_ ® o & S50 uapJ_ssut
=i 388, 88 dd elep asul
T - 2903 S¢ m gg3g IppE”Asul
¥ @ °s 5 a5 222 :
A E © 7] 2R
Oc | ©
8 3
5 2
[} o
=]
o
JEM waw BJEP JIEMWAW Jeswaw || seysTwaw
weJ woy ejep waw N0~ ejep wes woy ejep || no"ejep
weJs o) ejep waw ui_eyep wes o) ejep || uejep
Jppe”waw ippe_ejep Jppe wes || ippe
uaim~waw aum ejep uaps wels || uaps
uaps waw peas ejep uaJm-wel || uaim m
(4
Q
b 2 R
g g 5
c| £ =
<] o §© s
O © W.M o S < ﬁ_ _ 2
3 85388 =8 85 Ul Jemwsw <
el 107111 Ssaowmo uapJ~asul
o 5886688 w_d_o_d_a_ ep Jjsul g
2 888383 daugys proiiony g
8| 555555 33333 4ppe”nsul §
O =
a ejep doous
m. Auip~doous
& pljeA~doous
o gm—doous
X dodoous
o A Jppe~doous
o
% Jem-snq
i “ ul"ejep sng
m o do~snq
m Aa elep snq
[} Jppe~snq
a
B yem asul
% @ uapJasul
v d = ul"eyep ajsul
ok M ippe nsul
5 -
o
x 3 -
ok
|) 4 © [<

Figure A.1 — Dual-Core Processor Block Diagram

Appendix

Figure A.2 — Instruction Fetch Stage

5 | 4 | 3 | 2 | 1
Instruction Fetch)
StartingPC IFID_NOP
b opA 0x000 IFID_WE
0x200 __[°
D rgsult > PCPlusFour we
:J init PCPIusFou% =
processor_id PCPIusFour
D Q {—>currentPC PCPlusFourOut ———{___>1D_PCPlusFour
CurrentPC >—4 opB
o Hesire E Instr InstrOut —— > 1D_Instr
er .
0 PC I_D memwait_fetch Fetch/Decode Pipe
] 1 out 5 £3
s, S, 3]
2 PCWE -
- g £g
3 I-Cache Arra:
data_from_icache data_out
hit hit -
tag tag_in O
& NextPC index index_in @
data_to_icache data_in ©
ExtOut R 38
Shift Left By 2 Z88¢
Adder ® 50,1 ram_state
ESES) pe
SEPE hit S,
Instruction Cache Interface ram_state &
Jtype > |)) 2
> instr_mem_wait
ID_PCPIlusFour [>—— pC 5 instr_mem_data
out 1 instr_mem_read I-Cache Controller
Imm26 [—>——imm2s lout instr_mem_addr
0
JmpCalc .
Hazard Detection
regoutt >————— Alusee ST
8 Instruction Decode EX_MemRd EX_MemRd
EX_Rs EX_Rs
EX_Rt EX_Rt hazard hazard
. . ID_Rs ID_Rs
Pipe Enable/NOP Calculations ID_Rt ID_Rt
MEM_HALT
HALTInstr HALTInstriD memwait_dal
memwait_data memwait_data
] memwait_fetch memwait_fetch MEM_MemRd MEM_MemRd
MakeJump MakeJump PCWE PCWE u13 EX_Rw EX_Rw
CurrentPC CurrentPC IFID_NOP IFID_NOP MEM_Rw MEM_Rw br_hazard [—___>branch_hazard
hazard hazard IFID_WE IFID_WE OR2 ID_Rs Rs
JumpTarget JumpTarget IDEX_NOP IDEX_NOP ID_Rt Rt
BranchTarget BranchTarget opcode opcode
BranchRequest BranchRequest
branch_hazard branch_hazard Branch Hazard Detector
Pipe WE/NOP Calc -
A MEMWB_NOP Brian Kelley and Dan Ehrman
1 Title
: —{__>MEMWB_WE Purdue ECE 437 Dual-Core Processor - Instruction Fetch
memwait_da IDEX_WE 0
EXMEM_WE —{__>EXMEM_NOP ISize Document Number Rev
A 1
Date: Thursday, December 08, 2011 Bheet 2 of
5 I 4 I 3 I 2 I 1

13

Figure A.3 — Instruction Decode Stage

5 | 4 | 3 | 2 | 1
RegDst Regdst Instruction Decode IDEX_WE
ID_Instr B: Instruction RegWr RegWr IDEX_NOP
BranchRequest BranchRequest ALUOp ALUOp
ALUOut ALUOuUt
MemWr MemWr .
MemRd MemToReg S
MemToReg JALOp RegDst [>— RagDat z 2
D JAL Jtype 7B
Jtype ExtOp JALOpDest ReaWr B: RegWr RegWrOut EX_RegWr
ExtOp Imm5or16 MemToReg MemToReg MemToRegOut EX_MemToReg
Imm5or16 MemRd Rw RwOut EX_Rw
LUlInstr LUlInstr 31 HALTInstr [>——— HALT HALTOut EX_HALT
NextPC NextPC g T
HALTInstr HALTInstr d MemWr MemWr MemWrOut EX_MemWr
Linked Linked MemRd MemRd MemRdOut EX_MemRd
L MakeJump MakeJump JALOp D‘ Linked Linked LinkedOut EX_Linked
EX
Rs Rs Extender ALUOp ALUOp ALUOpOut EX_ALUOp
Rt Rt] ALUOut ALUOuUt ALUOutOut EX_ALUOut
Rd Rd busA busA busAOut EX_busA
imm16 imm16 imm16[___>— imm16 busB busB busBOut EX_busB
imm26 imm26 ExtOut imm immOut EX_imm
shamt shamt out H_>ExtOut ALUSrc ALUSrc ALUSrcOut EX_ALUSrc
shamt [>— imms5 Rs Rs RsOut EX_Rs
& ControlBlock Rt Rt RtOut EX_Rt
©
% 5 Decode/Execute Pipe
o ['2]
5 E
» £
JALbusA
ExtOp LUlbusA
Imm5or16 ID_PCPlusFo
[
WB_Rw Rs
Rs Branch Forwarding ID - Branch Handling WB_RegWr Rt
JALOpD——, LUlInstr D
regOut1 0 -
WB_Data 1 Out ¢ g ¢&
MEM_ALUResul 2 ZerobusB
B opcode [>—op br busA ;reggug
eq regOu
BranchFonNardAD A E | " WB_Data[__>——— buswW busB 0
Rt Branch Forwarding B EeactiBmnd 32x32Reg 0 B busB
Equal? Write Back
regOut2 BranchRequest
WB_Data JALOp OR LUI D
| | MEM_ALUResul
BranchForwardBD]
MEM_RegWr MEM_RegWr
WB_RegWr WB_RegWr
MEM_Rw MEM_Rw ForwardA :B BranchForwardA
WB_Rw WB_Rw ForwardB BranchForwardB -
A - Brian Kelley and Dan Ehrman
Rs ID_Rs Title
Rt ID_Rt Purdue ECE 437 Dual-Core Processor - Instruction Decode
opcode ID_opcode
: . ISize Document Number Rev
BranchForwardinglLogic A <Re
Date: Friday, December 09, 2011 Sheet 3 of 4
5 T 2 T 3 I 2 1

14

Figure A.4 — Execute, Memory, and Write Back Stages

5 | 4 | 3 | 2 | 1
Execution
MEM_RegWr MEM_RegWr
WB_RegWr WB_RegWr
MEM_Rw MEM_Rw ForwardA ForwardA EXMEM_WE [>MEM_MemRdData
WB_Rw WB_Rw ForwardB ForwardB Memory
EXMEM_NOP
o EX_Rs & EX_Rs MEMorSCResult
EX_Rt EX_Rt
Forwarding Logic %— §
z
EX_RegWr RegWr '° RegWrOut MEM_RegWr
EX_ALUOp[> EX_MemToReg MemToReg MemToRegOut MEM_MemToReg
. ; EX_Rw Rw RwOut MEM_Rw
R Forwiirding EX_HALT HALT HALTOUt
EX_MemWr TET
EX_busA EX_MemRd MemWr © MemWrOut
WB_Data & EX_Linked MemRd MemRdOut
MEM_ALUResul > ALUResult ALUResultOut BMEM_ALUResuIt
d < MemData MemDataOut MEM_Halt
result 0 Linked LinkedOut
ForwardA :)‘ { >memwait_data
Pi
c Rt Forwarding 2610 1 ou e
ALUSrc negative
Itu 2
EX_busB T EETVOE58 20 S50
WB_Data — 3 TERLsE T2 3FS8
MEM_ALUResul{ > 232589 <8 £7
J ALUOuUt o 5 < B3
K= (2]
= 2 < £
Fowards [> EX_ALUOut £
|-»
EX_imm [>—— Data Cache
£ s T>0
(POR. - =28
58 8% §88% $S3
EX_ALUSrc] __ >— B38 87 Jddd ddd
Wad oJE 888 888
o o2 o = (- - cCC
o208 2E€E Vod BOD
B
snoop_data
snoop_dirty
MEMWB_WE snoop_valid
snoop_wb
MEMWB_NO! snoop_op
L] snoop_addr
WB_RegWr bus_wait
Memory ¢ WB_Rw bus_data_in
= WB_Data bus_op
2 bus_data
MEM_RegWr RegWr '° RegWrOut MemFofing %bus_addr
MEM_MemToReg MemToReg MemToRegOut
MEM_Rw Rw RwOut [0
MEM_ALUResult ALUResult ALUResultOut Out v
A MEM_MemData MemRdData MemRdDataOut 1 Brian Kelley and Dan Ehrman
MEM_HALT HALT HALTOut Tiile
Mem/Write Back Pipe | Purdue ECE 437 Dual-Core Processor - Execute/Memory/Write Back
ISize Document Number Rev
HALT Q
Write Back B 1
Date: Thursday. December 08, 2011 heet 4 of 4
5 [4 [3 [2 [1

Figure A.5 — Data Cache Block Diagram

5 | | 3 2
=
= [c O
c g[5 ;' 3
Y T e 8 5 = = 9 2
S o £ S @ © = < o
E 8 o c
3 5 3 29 Zl 2 g 23
s 2 3 3 a 3 3 0
g 838 6§ ¢ o B g
addr halt_in
data Halt halt_out
L rd -
wr CPU ——-
wait hit 583583
A dirty ®23E)
rraytag_in 2° 0_8
addr tag_out ©
wr B index
rd BUs word
data block kel
¢ wait direct &% c
data ol g
wr 88
B write_valid %o
E controller_write ;
5 - ink reg|
o
opcale dcache coftroller
wal?
N equal? e
controller_signals[0..11]
data_out
snoop ontrl .
snoop_signals[0..7]
update snoop_data_out
B addr new_valid B
op new_dirty
wb -
valid tag dcache main
dirty index
word
valid
- dirty -
A W m ﬂ W A
5 0 Q °
335 235 388 3ES
®g 33 Baa 257
o3 = Saa I _l4
vl a 1l | aoQ
3¢ EE 288 883
5s s gsgg 888
] ;IE £7? Gao
©
©
5 | | 3 2

16

Figure A.6 — Data Cache Controller State Diagram

L

[NOT wait) NOT wait) |
Write Word 0 {Read DmyHme Word 1 (Read Dirty) Wait for Write (Read DirtyD

K2

[tead & NOT hit & NOT dirty)
[read & NOT hit & dirty)
[write & NOT dirty]
' Idle _) >(
[halt)
[write & NOT hit & dirty]

[NOT wait]
Read Opposite Word (Write Clean) Wait (Write Clean) CPU Write (Write CleanD—/

P

Increment Dump Word

[NOT wait) [dirty]
[dump_word = 31]

Write Word 0 {Dump)

[NOT wait)

Write Word 1 (Dump)

\([NOT wait) [NOT wait)
/\Wn'te Word 0 (Read DirtyHWrite Word 1 (Read DirtyHWait for Write (Read Dirty))—‘

[NOT wait) [NOT wait]
ead Opposite Word (ReadHead Requested Word (Read) Wait (Read) \

[NOT wait]
Read Opposite Word (Write Dirty) Wait (Write Dirty) CPU Write (Write DunVD—

17

Figure A.7 — Coherence Controller State Diagram

(p0_op = RdX & p1_snoop = M| \(—\
Cache to Cache RdX

/;J /
[pO_op = Rd & p1_snoop = M) \[{mem_wait = 0] {mem_wait=0 [pO_op = Nop)
/\Cache to Cache Write Back 1 Cache to Cache Write Back 1 Y

\ [pO_op = Rd & p1_snoop |= le—\
Idle f 2 Read From Memory f

pO_op = RAX & p1_snoop =M | [mem_wait = 0]\
L %ead From Memory Rdm

[pO_op = WB] WA
Write Back

[mem_wait = 0]

g

18

